考研高数冲刺如何去思考做题_考研数学高数冲刺都有哪些复习问题

教育资讯 www.c-hongkey.com

1、考研高数冲刺如何去思考做题

随着考研高数的冲刺阶段到来,我们要想好如何去思考做题,才能更好的提高自己的效率。小编为大家精心准备了考研高数冲刺思考做题的秘诀,欢迎大家前来阅读。

考研高数冲刺思考做题的方法

从基础出发,各个击破。把握整体知识网络后,要从大纲范围内的各个知识考点出发,各个击破。大纲范围内的考点很多,每个知识点投入的精力不可平均分配。根据《大纲》可知:大纲中考点的要求与这点处出题的概率有一定的关系。所以对需要“掌握”的内容投入多一点精力,一定要达到“掌握”的程度;而对“了解”的内容就不需要太过深入,“了解”了就可以了。而对于应该“掌握”“理解”的基本概念、基本定理、基本方法,一定要融会贯通。

思考着去做题。很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是题明明做过,但是再遇到还是不会做!这就是我们说的很多同学存在的通病,不求甚解。总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。其实,这些都是很重要的,要学着思考,学着"记忆",最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!

注意总结经验。平时做题肯定有我们不会做的,做错的题,是看过就算了还是要加强巩固攻克难关?当然是后者,不总结的话,那这么多题做下来,你相当于做的都是无用功,对自己的思维没有任何的提高。这里建议考生们准备一个本子,将不会做的题和做错的或者说不太容易理解的题都集中起来,分析一下做错或者不会做的原因在哪个方面,同时隔一段时间回顾一下这些内容,对知识的巩固和提高都是很有帮助的。

完成真题试卷模拟考试,错题总结。结合薄弱点,看复习指南,练上面的习题。(也可根据个人情况定时间长短)。如果提前完成任务一定要紧接着进入下一阶段的学习中。

不能“分区复习”。很多同学都倾向于把数学分为三区—高数、线代、概率,先把高数复习得滚瓜烂熟了,再着手复习剩下两门。这样做有几点危害:首先,如果你在一段时间只是看高数,看个两三遍,确实可以在短时间内有很大的进步,公式也都记住了,题目也做的可以背出来了。基本上在高数方面所向无敌了。但不要忘记人的遗忘特性有多么恐怖。等你放下高数书,花很多时间饿补线代、概率时,辛辛苦苦在你脑中积攒下来的知识又会丢回到课本中。

不能只看书不算题。有的同学会看很多辅导书,但依然得不到高分,就是因为没有动笔计算,没有提高自身的计算能力,但考研并不是考难题,往往是中等难度甚至是基础题加上较复杂的计算。所以没有强大的计算能力,是无法在考研高数中获胜。

每个人的学习能力不同,吸收能力不同,复习计划也不同,知识掌握程度不同,没有任何可比性。请记住你的最大的对手就是自己,应该每人反思是否比前一天有进步,这样你才能在强大的推动力下步步向前,日日进步。

考研复习持续时间长,期间难免会遇到各种各样的动摇心思的诱惑,所以持之以恒、坚持到底尤其重要。从量变到质变是一个积累的过程,只要功夫下得深,铁杵也能磨成针。

考研数学复习的解题思路

考研数学题海战术的正确用法

我们在数学的学习上都有自己的一套方法,那么做题多些到底是不是会有利于数学成绩的提高呢?多做题是很有好处的,什么题型都见过了,考场上才不会慌张,正确率也会提高,数学总分为150分,在初试中的比重加大了,拉分也正在于此,一定要引起重视。但是大家在做题时一定要注意不要陷入“题海战术”中,多做题的要求有两点,一个是数量,另一个是质量,所谓质量,就是指你所做的题目的重复性不能太强,一直重复地做同一类型的题目,根本没有意义,完全是在浪费大家宝贵的复习时间。多做题的言外之意是多做好题,多接触不同的题型,才能在做题过程中真正有所斩获。不可以一味的进行题目的背诵,让做题成为你背诵的一部分,那样做对于数学成绩的提高没有一点效果。

错题的正确复习方式

我们在做题的时候很容易会陷入到上面提到的背题的习惯中去,在做题时大家最好建立错题档案,将做错的题总结起来,方便再次进行复习。错题就像一面镜子,它能反映出你曾经犯过的错误,并让你以此为鉴,稳步提高。换言之,错题能够在很大程度上反映出你的知识漏洞,建立错题档案的目的在于永远避开这种错误,所以在大家的复习过程中,认真整理错题并建立错题档案还是十分有必要的。考生可以准备一个专门的本子,把你在复习过程中遇到的做错的或者拿捏不准的题目写进去,经常翻看,相信你一定会从这本错题档案中收获不少,并且绝对不会在同一个门槛上绊倒了。同样也不会因为错误而将题目背下来,我们将接替思路也写在题后,方便我们复习时进行解题的复习而不是背题。

考研数学冲刺复习不仅坚信而且时间很短,我们要不断的进行整理和努力才能得到真正的提高,祝大家复习顺利,考试取得好的成绩。

考研数学冲刺高数常考题型

一、函数、极限与连续

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学

求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学

计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。(注;高数中解答题的最后一步往往是求解一个积分,故积分的各种求解方法务必熟练再熟练!)

四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。此题型考研中占的分值较少,且若考的话直接考查概念。

五、多元函数的微分学

判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

六、多元函数的积分学

二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。每年会有一道解答题出现!

七、无穷级数

判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。

八、微分方程

求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

最后还要提醒考生,认真系统地按照各类考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。平时注意抓题型的解决方法和技巧,不断总结。最后按规定时间做几份模拟题,了解一下究竟掌握到什么程度,同时知道薄弱环节,抓紧时间补上。如果考生能够通过做题,将遇到的各种题进行延伸或变式,做到融会贯通,一定会取得好的成绩。 猜你感兴趣: 1.考研高数冲刺阶段的做题方法 2.考研数学复习该如何正确做题 3.考研高等数学如何高效复习 4.考研数学复习有什么做题方法 5.考研数学冲刺阶段该如何复习

2、考研数学高数冲刺都有哪些复习问题

考研将近,一些基础知识不太好的同学,对于数学的复习,无疑是焦头烂额,不知道如何复习才好。小编为大家精心准备了考研数学高数冲刺的复习指导,欢迎大家前来阅读。

考研数学高数冲刺的复习问题

高等数学的学习要注重基本问题的考查——基本概念、基本计算、基本逻辑。

常考的概念有:极限的存在性,连续性,间断点,可导性,微分,极值定义,渐近线,定积分的可积性,原函数的存在性,变限积分的连续性,反常积分的敛散性,定积分的几何应用(平面面积公式、旋转体体积公式、数一数二的弧长公式、旋转侧面积),数一数二考查的定积分的物理应用(功、压力、引力等),通解的概念,解的定义,线性微分方程解的结构和性质,数一数三无穷级数涉及(收敛级数的性质,数项级数敛散性判别法,阿贝尔定理)等等。

基本计算主要涉及三个运算:求极限、求导数和求积分。极限会求,可以解决连续性、间断点、渐近线、可微等问题,导数会求,那么导数的应用——单调性、极值、最值、凹凸性、拐点、不等式的证明问题轻而易举。积分在考试中主要就是要会计算,包括定积分、二重积分、数一的三重积分和曲线曲面积分。

基本逻辑,指的主要是证明题,以及基本运算中的解题思路。证明主要包含不等式证明(涉及中值的——首选拉格朗日中值定理,不涉及中值的——利用单调性、极值是最常见的处理手法),当然还包括积分的等式不等式证明问题。

2018考研只剩下30多天,目前来说,合理安排学习规划,是制胜的关键。

首先是真题的利用。真题虽然是考过的题目,但是所涉及的知识点一定是考查的重点,通过对以往真题的学习,能从中了解到哪些内容是考查的重点——极限的求解、导数的应用、积分的计算、多元微分求偏导和多元极值、二重积分的计算、幂级数求和函数、数一的三重积分曲线曲面积分,这些必然是考查的重中之重,可以说每年必考的内容。

那么如何利用真题呢?一般一套真题要花3天来消化——第一天仿真模拟加错题修订、第二天把错的题目独立的再做一遍、第三天巩固消化进入下一个轮回。一般真题至少要做15年的,如果能力比较强,那么可以做一做年份久远的“老爷题”,“温故而知新”。

其次是模拟卷。我们学习是为了针对考试,正式考试的题目肯定不是我们做过的原题,这就要求我们熟悉和适应——用熟悉的知识点求解相对新颖的问题。经过真题和模拟卷的洗礼,距离考试就已经很近了,把笔记回顾一下,尝试写一写知识大纲。把一些考频比较低的知识点拿来背一背,每个知识点配套两个习题以加强。这些知识点主要针对数一的同学,包括:曲率公式,方向导数,梯度,旋度,散度,傅里叶系数和狄利克雷收敛定理。

考研数学二微分学常考题及基本考点汇总

(一)考试内容

导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值及最小值、弧微分、曲率的概念、曲率圆与曲率半径。

(二)常考题型

1.对导数定义的考查;

2.导数和微分的计算(包括高阶导数);

3.切线与法线的计算;

4.对函数单调性的考查;

5.求函数极值与拐点、渐近线的问题;

6.对函数以及其导数函数相关性质的考查。

考研数学考场答题的高分策略

★分步得分法

考研数学试卷中的解答题是按步骤给分的。在考研试卷中,80%的题目是考查基础的,所以大部分考生的情况是,题目有思路会做,但是由于当中计算失误,导致最后的答案是错的。或是会做,但是缺少必要关键的步骤,也不能拿满分,这就是我们平时遇见的“会而不对,对而不全”的老大难问题。

纠正这一错误的做法是:要求考生在平时做题时,认真书写解题过程,注意表达要准确、逻辑要紧密、书写要规范,防止被扣分。

★跳步得分法

解题时有思路,但是发现做在一半卡壳了。一般是有两种情况,一是某个知识点或性质忘记了,对于这种情况静下心来捋一下这块的内容,看看会用到哪个知识点。由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。

★缺步得分法

若是遇到一个很困难的问题,实在是不能完全做出来。一个聪明的解题策略是,将它们分解成一个个的小问题,先解决问题的一部分,能解决多少就解决多少,能写多少就写多少,尽量不要空白。尤其是一些解题思路比较固定的题目,若是重要的步骤写出来后,虽然结论没有得出,但是分数却可以拿到一半以上,这确实是一个不错的主意。 猜你感兴趣: 1.考研数学冲刺需要掌握什么复习策略 2.考研数学冲刺高数部分复习方法及重点 3.考研数学冲刺复习的原则有哪些 4.考研数学冲刺阶段该如何复习 5.考研数学冲刺阶段需要注意什么

3、考研高数冲刺各题型的考察重点

我们在进行考研高数的冲刺时,需要把各题型的考察重点掌握好。小编为大家精心准备了考研高数冲刺各题型的考察要点,欢迎大家前来阅读。

考研高数冲刺各题型的考察知识点

数一对于高等数学的考查一共82分,其中四个选择,四个填空以及五道解答题。对于选择题的考查多集中于概念、定理、公式、性质,当然也会结合适当的计算,考查重点在于:

1)对于极限的考查主要包括:直接计算、无穷小的比较、连续和间断点等;

2)微分学部分的考查主要包括:导数的定义及几何意义、多元函数微分学中连续、偏导存在以及可微的判断;

3)积分学主要考点集中在:定积分的定义及几何意义、广义积分的敛散性判断、二重积分交换积分次序以及变换坐标系、多元积分学中对几类积分的物理背景及性质的考查;

4)微分方程的求解尤其是二阶常系数非齐次线性微分方程中特解的设置等;

5)常数项级数敛散性判断、幂级数收敛半径、收敛区间及收敛域的计算。

对于填空题而言,高等数学多集中于计算:

1)极限的求解;

2)一元函数的微分学侧重考查隐函数、参数方程的求导问题,当然也会结合简单的导数应用如切线和法线、微分的计算等;多元函数微分学中隐函数和复合函数的一阶、二阶偏导以及全微分同样是考查重点;

3)不定积分和定积分的计算,尤其是对定积分对称区间积分的考查不容忽视;

4)二重积分的计算多集中于调换积分次序和变换坐标系,同时对称性的考查也是重点;

5)各类微分方程的求解;

6)多元函数积分学部分,三重积分的计算包括质心和形心的考查、简单的曲线曲面积分的计算。

解答题部分主要考查学生的综合解题能力,题目难度相对较高,运算过程较复杂,而且题目涵盖的知识点全面,多集中于以下知识点:

1)极限的计算,解答题中要更多地关注夹逼定理、定积分定义解决n项求和取极限的问题、单调有界收敛原理等知识点;同时利用已知极限求解参数考查的也比较频繁;

2)导数的几何应用、物理应用(考查变化率的题型)、多元函数求解无条件极值、条件极值以及有界闭区域内最值的问题;

3)一元函数积分学中对不定积分的计算、定积分的几何应用和物理应用的考查相对较多,多元函数积分学中线面积分几乎每年必考,需要引起学生的高度重视

4)微分方程的应用题;

5)常数项级数的求和、幂级数的展开与求和问题;

6)以上题型均以计算为主,在解答题中,不等式的证明以及中值定理的证明的考查同样十分频繁,需要同学们认真对待。与此同时,在考研的最后阶段,同学们还应该将考查相对较少的知识点例如:曲率、曲率圆、方向导数和梯度、旋度与散度、傅里叶级数等进行复习,这些知识点多集中于公式的记忆,希望在考前能够巩固记忆。

以上为数一的核心考点。数二和数三的同学在考查内容上大同小异。

数二试卷中高数所占比重最高,为116分,分别是6个选择、5个填空以及7个大题,其特点是考查内容较少,但题目较多,所以考查相对细致。与数一的考查知识点相比,数二的同学只需要删除其中多元积分学、级数的考查即可,其他知识点的考查没有太大的变化,而且对于导数、定积分和微分方程的物理应用应该加强练习,数二对物理应用的考查相对比较活跃,且此处难点较多,学生得分率并不理想。

数三试卷高数的比重与数一相同,分值82分,四个选择,四个填空以及五道解答题。与数一的考查知识点相比,只要删除多元积分的考查以及各类物理应用即可,但数三的同学应该关注导数的经济学应用、差分方程等数三特有的考点,这些知识点的考查在数三试卷中比较活跃,不容忽视。

在最后的冲刺学习中,希望各位学员能够做好查漏补缺、错题回顾,突破考研重难点的同时也将考查不频繁的知识点进行回顾记忆。

考研数学冲刺概率核心考点及题型

一、 核心考点及常考题型分析

1、 随机变量及其分布

在考试中,该考点所占比重很大,每年分值在12分左右。

核心考点:

i、分布函数、分布律、概率密度的相关性质;

ii、联合分布、边缘分布与条件分布的计算;

iii、随机变量函数的分布以及随机变量独立性的判断;

iv、常见分布的相关性质;

以上考点中,要重点掌握边缘分布以及条件分布的定义与相关的计算公式、随机变量函数的分布,在历年考研数学中考查力度还是相当大的。求解过程中重在理解分布函数的定义,尤其涉及到随机变量范围的讨论时,避免失误,各位考研君一定要多加注意!

常考题型:

i、有关分布函数、分布律、概率密度的相关性质的考察;

ii、离散型或连续型随机变量边缘分布、条件分布的计算;

iii、求解随机变量函数的分布。

1、 数字特征

考研中对数字特征的考察,频率也是很高的,在考试中,此考点一般与随机变量结合出题,每年的平均分值大概也在8分左右,所以考研的小伙伴更是不能忽视呦!

核心考点:

i、随机变量以及随机变量函数的期望、方差相关计算公式;

ii、数字特征的常用性质、常见分布的数字特征及运用;

iii、二维随机变量协方差、相关系数的计算及其性质;

iv、独立性与不相关性的讨论;

常考题型:

i、直接考察数字特征的计算;

ii、考察数字特征的常用性质;

对于该高频考点,公式多,记忆量大,所以要把相关的公式以及性质进行有效记忆,避免出现公式错用、混用的情况。在考研中该考点与考点1经常结合出题,构成考研数学概率中的一道大题,各位考研君一定要提高警惕!

2、 参数估计

参数估计是数理统计的重要内容,也是考试的重点,考研中对此考点的考查方式多以大题为主。

核心考点:点估计。点估计方法中,以矩估计和最大似然估计为主。在复习该核心考点时,重点把握两种估计方法的求解步骤。

常考题型:

主要集中在连续型随机变量的参数估计。

考研数学:高数重点体系怎么学好

考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计。但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首。其二,科目之间的先后联系导致先复习高数。

线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性。

为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的。这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点,而不是只见树木不见森林。

►高数到底是什么?

高等数学从大的方面分为一元函数微积分和多元函数微积分。

一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学。另外还有微分方程和级数,这两章内容可看成是微积分的应用。

除此之外还有向量代数与空间解析几何。其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍。

一、一元微积分

1.极限

极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的。

正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭。在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分。

2.倒数

有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强。这一章可从导数微分概念、计算、应用、中值定理三方面学复习。

3.不定时积分

不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎么描述都不为过。因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到。

4.定积分

定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考。微分方程本质上还是不定积分的计算。

二、多元微积分

多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用。

多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目。最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容。

►高数该怎么学?

虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢。

由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸。

同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了。最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数。 猜你感兴趣: 1.考研高数冲刺阶段的考察要点 2.考研数学冲刺如何归纳题型 3.考研数学冲刺阶段的复习重点 4.考研数学冲刺必背的重点知识 5.考研高数冲刺的考察难点要点剖析

4、考研高数冲刺的考察难点要点剖析

考研数学冲刺复习,高数占比大,大家要注意协调复习时间,把握复习重点。小编为大家精心准备了考研高数冲刺考察难点重点解析,欢迎大家前来阅读。

考研高数冲刺近3年考察难点要点分析

纵观近三年的数一、数二和数三的试卷,我们不难发现极限、微分和积分依然是重中之重,也是考试经常会考的知识点和难点,尤其是极限和微分的结合,极限和积分的结合,更加需要考生深刻地掌握基本的概念、基本的理论和基本的方法。另外,还需要考生多做一些与考点、难点紧密相连的题目,在做题的过程中掌握基础理论、基本方法,以便在考试之中,面对不同的题目灵活运用。下面,我就近三年的高等数学中的考点、难点向大家进行深刻的剖析。

函数、极限、连续部分。极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。极限的最基本考法就是求极限,大家需要掌握求极限的方法,极限也多与微分、积分联合在一起进行考试;极限的存在性证明,高等数学中我们进行极限的证明就只有两种方法,一种是夹逼原理,一种是单调有界性定理,考生需要完全掌握这两种方法,在考试中,对不同的题目进行灵活的使用。

微分学部分,主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。微分学的应用也是考试的重点,如判断函数的单调性,求解函数的单调区间,函数的凹凸性、拐点及渐近线,也是一个重点内容,考生需要掌握基本方法以外,还需要深刻的了解单调性,极值点,凹凸性,拐点相互之间的关系。曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。利用函数的微分性质,求解函数在固定区域中的最值问题也是难点,这一点除了需要考生掌握基本理论和基本方法以外,因为这一类的题目计算起来比较复杂,尤其是二元函数的极值问题,因此还需要考生多做一些相关的题目,增加自己的熟练度。

一元函数积分学的一个重点是不定积分与定积分的计算。这个对于有些同学来说可能不难,但是要想用简便的方法解答还是需要多花点时间学习的。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,这种方法相信多数同学都会,但是如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,同学们应牢记相关公式,通过多练掌握解题技巧。对于定积分在物理上的应用(数一数二有要求),如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。

多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。三重积分、曲线和曲面积分属于数一单独考查的内容,主要是掌握三重积分的计算、green公式和gauss公式以及曲线积分与路径无关的条件。对于数一考生来说,这部分是重点,也是难点所在。散度、旋度同样是数一考生单独考查内容,但是不是重点,会进行简单计算即可。

空间解析几何,考试要求较低,并且空间解析几何多为多重积分服务,考试的时候多以选择题和填空题的形式出现。级数要求考生会判断敛散性和求出收敛区间、收敛域即可。对于常微分方程,主要是有两大类考点和难点,一为一阶常微分方程和可降阶的二阶常微分方程的解法,一为高阶常系数齐次(或非齐次)常微分方程的解法,考试考大题的几率较低,差分方程仅对数三有所要求,考试的几率几乎为零。

考研数学复习三个失分原因要规避

▶填空题失分点

(1)考查点:填空题比较多的是考查基本运算和基本概念,或者说填空题比较多的是计算。

(2)失分原因:运算的准确率比较差,这种填空题出的计算题题本身不难,同学们出错的原因主要是不够细心。

(3)对策:这就要求同学们复习的时候些基本的运算题不能只看不算。同学们平时对一些基本的运算题也要认真解答,要在每一种类型的计算题里面拿出一定量进行练习。

▶选择题失分点

(1)考查点:

选择题一共有八道题,这部分丢分的原因跟填空题出错原因有差异,选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,主要是容易混淆的概念和理论。

(2)失分原因:

首先,有些题目确实具有一定的难度。其次,有些同学在复习过程中将重点放在了计算题上,而忽视了基础知识,导致基础知识不扎实。最后,缺乏一定的方法和技巧。由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题。

(3)对策:

第一,基本理论和基本概念是薄弱环节的同学,就必须在这下功夫,复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。平时在复习的时候要注意基本的概念和理论。

第二,客观题有一些方法和技巧,通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧。

▶计算题失分点

(1)考查点:

计算题在整份试卷中占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。

(2)失分原因:

运算的准确率比较差。

(3)对策:

首先,多做练习是关键。基本的运算必须要练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握方法,并且一定自己要实践。其次,还有一类题就是证明题,如果出了证明题一般来说这部分就是难点。证明题里面有几个难点的地方是经常考察的地方,同学们复习的时候要注意知识难点的规律和使用方法。

建议大家从复习初期就开始为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,这样,一定会留下非常深刻的印象,避免遗忘出错。

另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。

考研数学复习课本及真题的用法

▶关于数学课本

记得当初复习的时候就听很多人说考研数学注重基础,数学课本如何如何重要,应该花大量时间去看。现在感觉这种观点有些片面,我十分认同考研数学注重考查基础的观点,但并不赞同重基础就是多看课本。

我这样讲是有原因的:大家用的课本大多是同济六版的,内容很多,当你把这本书拿在手里并参考大纲进行比对时,你会发现哪些部分比较重要,哪些部分不重要或不考,但你不会明白考研数学如何对这一部分进行考查。

同济课本不是专门为考研而编写的因而其课后题与考研题相去甚远,即使你把课本上所有的题目都掌握之后,也不见得会做几道考研题。

我的一个同学就是一心只看课本,几乎没做过其他参考书,考试之后他对我说:"这些题我都看着面熟,就是不会做!"其中原因是什么呢?结果不得而知。因此,学弟学妹们无需把课本看得过重。

▶真题和模拟题的学习方法

真题我只做了一遍,而且是从2000的开始的,之前的没做。考研题的出题模式是很固定的,只要不出现计算错误肯定是没有问题的。

模拟题,我的做题速度就是靠它练出来的。对于模拟题,我的做法是:上午拿出三个小时模拟,尽量在规定时间内完成所有题目,我选的是比较难的,计算量一般也会很大,因而出现不会做或做不完的情况也是很正常的,这个时候千万不要失落和放弃,一定要坚持下来,慢慢就会适应的。

当你经过周密的思考和复杂的计算能够做对题目,拿下130+的分数时,说明你的数学已经掌握的不错了。

▶要加强对数学理论的研究

你可以试着用一种通俗的方式将一条晦涩的定理将给同学听,使他也能够明白。如果能够达到这样的话,说明你已领悟了该定理的真谛,做题也就没什么难的了!

总之,对待数学要勤于思考,善于总结,平时多做多练,得高分还是相对容易的。 猜你感兴趣: 1.考研冲刺阶段重难点及方法 2.考研数学冲刺阶段的复习攻略 3.考研大纲高数复习该注意的细节有哪些 4.考研数学高数必须掌握的知识点 5.考研数学冲刺阶段复习更要重视基础

5、猜你喜欢: